

Element Concept 1

Science Data Processor

SDP Element Concept

Document number ... SDP-PROP-DR-001-1
Revision ... RELEASE 1
Author .. Paul Alexander, Chris Broekema, Simon Ratcliffe,

Rosie Bolton, Bojan Nikolic
Date... 2013-06-6
Status ...Released

Element Concept 2

Science Data Processor

Element Concept 3

Science Data Processor

Table of Contents

1 PURPOSE AND SCOPE OF THIS DOCUMENT 5

1.1 PURPOSE OF THIS DOCUMENT 5

1.2 LIMITATIONS AND SCOPE 5

1.3 ABBREVIATIONS AND ACRONYMS 7

1.4 APPLICABLE AND REFERENCE DOCUMENTS 8

1.4.1 APPLICABLE DOCUMENTS 8

1.4.2 REFERENCE DOCUMENTS 8

2 SPECIFICATIONS AND REQUIREMENTS 9

2.1 OVERVIEW 9

2.2 INPUT FROM THE BASELINE DESIGN 9

2.3 UPDATING INPUTS FROM CODR ANALYSIS AND DRM TO MATCH BASELINE DESIGN 10

233E9 11

2.3.1 LIMITING CASES: 14

2.3.2 CONTINUUM SURVEYS WITH SKA1 MID AND SKA1 SURVEY: 14

2.3.3 NON-IMAGING PROCESSING 14

2.4 OTHER INPUTS AND LESSONS LEARNT 14

2.4.1 ALMA 15

2.4.2 LOFAR 16

2.4.3 MEERKAT 19

2.4.4 ASKAP 19

2.4.5 MWA 20

3 ELEMENT ARCHITECTURE CONCEPT 22

3.1 BASIC CONSIDERATIONS 22

3.1.1 SYSTEM DECOMPOSITION 22

3.1.2 LOOSE COUPLING 22

3.1.3 RELIABILITY AND ROBUSTNESS 23

3.1.4 SUPPORT TECHNOLOGY EVOLUTION 23

3.1.5 PROMOTE SOFTWARE CONSISTENCY 24

3.2 FUNCTIONAL ANALYSIS 24

3.2.1 CONTROL AND MONITORING 28

3.2.2 DELIVERY 28

3.2.3 SCIENCE ANALYSIS 29

3.2.4 INPUT CONDITIONING 29

Element Concept 4

Science Data Processor

3.2.5 OUTPUT CONDITIONING 30

3.2.6 VIRTUAL OBSERVATORY 30

3.2.7 PLATFORM SERVICES 30

3.2.8 DATA LAYER 30

3.2.9 SUPPORT 31

3.2.10 TIME SERIES PROCESSING 32

3.2.11 USER INTERFACE 33

3.2.12 VISIBILITY PROCESSING 34

3.3 COMPONENT BREAKDOWN 35

3.3.1 COMMON HARDWARE 35

3.3.2 SDP MASTER CONTROLLER 35

3.3.3 ROLE SPECIFIC HARDWARE AND SOFTWARE 36

3.4 DATA FLOW 38

3.5 OUTLINE ARCHITECTURE 42

3.5.1 HARDWARE ARCHITECTURE 42

3.5.2 SOFTWARE ARCHITECTURE 46

3.5.3 EXTERNAL INTERFACES 51

3.5.4 SCIENCE DATA ARCHIVE 51

4 ELEMENT COST ESTIMATES 55

4.1 METHODOLOGY FOR HARDWARE COSTS UP TO 2020 55

4.1.1 COMPUTE BLADES 55

4.1.2 DATA ROUTING 55

4.1.3 UV BUFFER SYSTEM 56

4.1.4 ARCHIVE SYSTEM 56

4.2 SYSTEM HARDWARE COST 56

4.2.1 INTRODUCTION 56

4.2.2 SIZING OF COMPUTE SYSTEM 58

4.3 SOFTWARE IMPLEMENTATIONS COSTS 59

Element Concept 5

Science Data Processor

1 Purpose and Scope of this Document

1.1 Purpose of this document

This document provides an overview of the technical description for a possible Science Data

Processor Element including all aspects of hardware and software.

The technical description for the element is conceptual and preliminary ɀ it in no way is to

be considered as precluding at this stage any design concepts which may emerge from the

detailed design.

All of the technical concepts presented here will be evaluated and tested as a core element

of the detailed design process.

This document also provides an estimate of the costing for the preliminary architecture.

Some discussion of the limitation of this concept and the mapping onto the work required

during the detailed design phase is also presented.

1.2 Limitations and Scope

This document provides a preliminary analysis of the Science Data Processor element and

introduces a possible architecture for the Science Data Processor. The architecture

discussed and associated costings are to be regarded as highly preliminary. The following

specific limitations and modifications to the scope of this preliminary architecture are

noted:

1. The content of this document makes substantial use of the material available at the

time of the Software and Computing Conceptual Design Review (CoDR) in February

2012. There has been no attempt to provide a complete reconciliation of the

material presented at the CoDR with the baseline design. We consistently adopt

conservative estimates for data rates through the system etc. We freely reuse

material from the CoDR without explicit citation where appropriate.

2. The implication of the two-site location for the telescope and the existence of SKA1

Survey Element (SKA1_SURVEY) are only considered in the simplest fashion. In

particular no attempt is made to develop use cases for the SKA1 Survey Element and

the published SKA1 Design Reference Mission (DRM) is used to specify data rates

and requirements on all elements.

3. We assume that existing algorithms are sufficient to reach the required performance

of the telescope and that we are able to achieve appropriate scaling to SKA1

requirements without significant modifications to the overall algorithmic approach.

These are assumptions that will be fully tested during the design phase.

4. We question the limitation in the baseline design to define the extent of the SDP

element to a boundary at the physical edge of the off-ÓÉÔÅ Ȱ(0# ÆÁÃÉÌÉÔÙȱ ÒÅÆÅÒÒÅÄ ÔÏ ÉÎ

the baseline design. Instead we consider architectures which are capable of data

and science delivery to end users. A simple tiered data delivery architecture is

presented in the preliminary architecture with a detailed analysis planned within

Element Concept 6

Science Data Processor

the overall scope of the work. This is most important in the scope of the work

proposed. The costing we present is limited to the boundary defined in the baseline

design. We believe it is essential to consider a complete system so that:

a. the project may obtain proper estimates for the total cost of ownership

b. have confidence that science may be extracted from the proposed data

products

c. enable technically informed decisions about the requirements and

governance of distributed data centres and other aspects data delivery to

end users which are critical to the overall operational model for the SKA.

5. The baseline design implies that the HPC facility is a stand-alone element. The

nature of the SKA, both in terms of data rates and operational requirements demand

that the processing facility is an intrinsic part of the observatory infrastructure with

the ability to process data in near real time. It will be a leading edge processing

facility , perhaps the leading HPC facility for streaming data through at least until the

completion of SKA2. For these reasons the SDP element must be fully integrated

into the observatory, including close integration with the observatory control

system and telescope manager.

6. The baseline design explicitly states that the SDP element will be off-site. For this

preliminary architecture we make no assumptions about location. For the definition

of the work to be done we include the architectural options of siting the SDP

element either on-site, off-site or split and with potentially different solutions in the

two sites. Our cost estimates are agnostic about the location of the SDP element.

7. The SDP element is sized for SKA1. An intrinsic part of the detailed design for this

element is to consider how the SDP element can evolve to SKA2-scale, which is a

major challenge. This scalability is reflected in how we approach the system design

and decomposition, and is also strongly present in the overall scope of work to be

undertaken.

We recognise the limitations of these assumptions. The work to be undertaken through to

CDR will address these and other aspects of the design.

Element Concept 7

Science Data Processor

1.3 Abbreviations and Acronyms

Abbreviation or Acronym Meaning

API Application Processor Interface

CBF Correlator Beamformer

CoDR Conceptual Design review ï specifically unless
otherwise stated the Software and Computing
CoDR from February 2012.

CDR Critical Design Review

DM Dispersion measure

DRM Design Reference Mission. Unless specifically
qualified this refers to the published DRM version
2 for SKA1

EoR Epoch of Reionisation

FFBD Functional Flow Block Diagram

FFT Fast Fourier Transform

FLOP Floating Point Operation

GGPU General-purpose GPU

GPU Graphical Processing Unit

ILS Integrated Logistics and Support

IO Input Output

IVOA International Virtual Observatory Alliance

MAID Massive Array of Idle Disks

OSKAO Office of the SKA Organisation

PDR Preliminary Design Review

PDU Power Distribution Unit

QA Quality Assurance

RFI Radio Frequency Interference

RFP Request For Proposals

SCS SKA Common Software

SDP Science Data Processor

SKAO SKA Organisation

SME Small to Medium size Enterprise

SSD Solid State Disc

TM Telescope Manager

TOA Time of Arrival

UIF User Interface

USE User Supplied Equipment

UV data Visibility data

VO Virtual Observatory

WBS Work Breakdown Structure

WORO Write Once Read Occasionally

Element Concept 8

Science Data Processor

1.4 Applicable and reference documents

1.4.1 Applicable Documents

Title Document Number

SKA Request for Proposals SKA-TEL.OFF.RFP-SKO-RFP-001

Statement of Work for the Study, Prototyping
and Design of an SKA Element

SKA-TEL.OFF.SOW-SKO-SOW-001

Statement of Work for the Study, Prototyping
and Preliminary Design of an SKA Advanced
Instrumentation Programme Technology

SKA-TEL.OFF.AIP-SKO-SOW-001

SKA-1 System Baseline design SKA-TEL-SKO-DD-001

The Square Kilometre Array Design Reference
Mission: SKA Phase 1

SCI-020.010.020-DRM-002

SKA Interface Management Plan SKA-TEL.SE.INTERF-SKO-MP-001

S&C CoDR Requirements and specifications D2_WP2-050.020.010-SRS-001-E

S&C CoDR Analysis of DRM Requirements D2A_ WP2-050.020.010-RR-001 -E

S&C CoDR System Overview D3_ WP2-050.020.010-DD-001-I

S&C CoDR Software Engineering D5_ WP2-050.020.010-MP-001-F

S&C CoDR HPC technology roadmap D3D_ WP2-050.020.010-SR-001 -E

S&C CoDR Cyber SKA D3C_ WP2-050.020.010-SR-001-E

S&C CoDR Visibility Processing D3A_ WP2-050.020.010-SR-001-C

S&C CoDR Time series processing D3B_ WP2-050.020.010-SR-001-C

1.4.2 Reference Documents

Title Document Number Issue

SDP Consortium Proposal Plan SDP-PROP-PLA-001-1 1.0

SDP Consortium Verification Plan SDP-PROP-PLA-004-1 1.0

SDP Consortium Integrated Logistics
and Support Plan

SDP-PROP-PLA-005-1 1.0

SDP Consortium Prototyping Plan SDP-PROP-PLA-007-1 1.0

Element Concept 9

Science Data Processor

2 Specifications and Requirements

2.1 Overview

The Baseline Design provides little direct input to either the specification or the design of

the SDP element. The baseline design specifies the maximum data rates that the SDP

element can expect to receive from the correlator / beamformer. Ingest of these data and

further averaging will be an initial step of the SDP processing pipeline which in turn has a

relatively low computational cost. For analysis and design of the system, input data rates

through the remainder of the processing pipeline coupled with the expected computational,

memory and storage requirements are the critical input. Similarly for design of the tiered

archive and data delivery system specification of the data products and operational model

are required.

For the purposes of this document we adopt the following approach:

¶ We take as input the analysis of the DRM presented at the SKA S&C Conceptual

design review

¶ We perform a preliminary updating of this analysis to account for the system

description contained to provide initial specifications for the SDP element

¶ We further update these specifications to account for updates to version 3a of the

DRM

The specifications presented here must therefore be regarded as highly preliminary and

only have applicability in the context of this element concept prepared in response to the

SKAO RFP.

2.2 Input from the Baseline Design

The main specifications relevant to the SDP are the given input data rate from the

correlators (they follow from Table 20 of the BL document). They are summarised in the

table below together with previous data rate estimates and our summary of maximum rates

given the experiments defined in the design reference mission and the trivial averaging that

can be done as soon as the data reach the SDP:

Element Previous Data
Rate (GB/s)

Updated Data
rate from
correlator
(BL Design)

Estimated
maximum for
experiments

SKA1 LFAA 420 842 245

SKA1 Survey 42 4670 995

SKA1 Mid 8.5 1800 255

Estimates for the data rates to be processed are based on the analysis for requirements

presented at the CoDR updated to reflect the changes to Baseline Design and DRM 3a:

discussion of this input is presented in the next section.

Element Concept 10

Science Data Processor

2.3 Updating Inputs from CoDR analysis and DRM to match Baseline Design

These data rates derived directly from the BL exceed those we determine from analysis of

the SKA1 DRM and those which were presented at the CoDR. We assume the BL data rates

represent the maximum throughput of the correlator. As mentioned above, the first stage of

the SDP processing pipeline is an ingest pipeline which we specify also to provide initial

processing and reduce the data rate through the rest of the SDP to values appropriate for

each experiment within the DRM ɀ these latter data rates are used to size the processing

system and give our cost estimates.

Of course we need to consider more than just the data rate in order to cost the system: we

also need to make estimates of the processing load, RAM (fast) memory requirements, UV

buffer size and the size of the overall archive. To achieve this we assume that all the UV data

(or in the case of the NIP) all the beam samples for a complete observation can be stored in

a data buffer. We assume that the processing of the data from one experiment is carried out

in the time taken to make the observations and that for the imaging experiments that the

processing load is dominated by the gridding of UV data prior to performing an FFT. We

estimate the archive size assuming 1000 hours on the sky per experiment.

The tables below summarises the data rate requirements for each of the imaging

experiments and for the different telescopes. In several cases the system performance

described by the Baseline Design document is not compatible with doing the experiment ɀ

typically this is because the required channel width for the experiment is narrower that the

stated frequency resolution. In these cases we present output data rates for a system that

meets the required spec for the experiment (and therefore has more channels) and take

note of the discrepancy.

Significantly, DRM chapter 4 (HI absorption forest), with a stated target sensitivity to optical

depths of 0.001 against 20mJy background sources and in only 0.3kHz bandwidth for the

absorption line appears to be beyond the scope of SKA1 Low: our analysis would suggest

that SKA1 LOW does not have sufficient sensitivity to achieve the requirements of the

experiment in an acceptable integration time.

Another important factor to consider is the number of beams required to conduct an

experiment with SKA1 SURVEY. None of the imaging experiments require large fields of

view; we present figures assuming that all 36 beams are used, but since this drives the

system design in many cases we also present limiting cases if only 1 beam is used in the

discussion that follows the tables. If SKA1 LOW and SKA1 SURVEY have a shared processing

system then somewhere between (say) 5 and 15 beams for SKA1 SURVEY could lead to a

balance in the processing load of the two systems, depending of course on the number of

channels.

Element Concept 11

Science Data Processor

SKA1 LOW CH2 EOR HI
emission

CH2
EOR source
subtraction
(continuum
survey in full
polarization)

CH3
HI absorption

CH4
High redshift HI

absorption

Bmax (m) 5,000 50,000 10,000 10,000

G(out) Bytes/s 3.7e9 13e9 245e9
233e9

Nchan 2500 Varies with bl 80,000 280,000

Visibilities/s 9.4e8 3.2e9 61e9 214e9

Gridding
operations per
visibility

6.3e3 63e3 13e3 3.2e4

Flops/s
(Gridding)

4.7e13 1.6e15 6.2e15 1.5e16

UV Buffer,
GBytes

1.3e5 5.6e5 1.1e7 1.0e7

Observation
length, hours

5 5 6 6

Archive,
1000hrs of
experiment
(TBytes)

1.3e4 1.4e3 4.5e2 3.1e6

Notes 15s integration
time assumed.
Query: Can
experiment be
done:
sensitivity?

Element Concept 12

Science Data Processor

SKA1 SURVEY CH3 HI absorption
Band 2

CH8
HI emission in
nearby universe

Continuum Survey

Bmax (m) 10,000 50,000 50,000

N(beams) 36 36 36

G(out) Bytes/s 995e9 74e9 11e9

Nchan 375,000 5,000 ~4,000 (varies)

Visibilities/s 2.5e11 1.8e10 2.8e9

Gridding operations
per visibility

16e3 5.8e4 4.1e4

Flops/s (Gridding) 32e15 8.5e15 9.2e14

UV Buffer, GBytes 1.4e7 3.2e6 5.0e5

Observation length,
hours

2 6 6

Archive, 1000hrs of
experiment
(TBytes)

9.1 2.6e5 2.5e5

Notes Archive postage
stamp, one per
object detected.
tǊƻōŀōƭȅ ŘƻƴΩǘ
need all beams:
depends on number
objects in FoV

 Included to ensure
appropriate sizing
of compute for
likely use cases.
Would want to
always use 36
beams for
continuum survey

Element Concept 13

Science Data Processor

SKA1 MID CH3 HI
absorption
Band 1

CH3 HI
absorption
Band 2

CH8 HI
emission
in nearby
universe

SKA1 MID Continuum
survey?

Bmax (m) 10,000 10,000 50,000 50,000

G(out) Bytes/s 255e9 64e9 13e9 13e9

Nchan 600,000 150,000 5,000 Varies

<17,000

Visibilities/s 64e9 16e9 3.3e9 3.2e9

Gridding
operations per
visibility

2.0e4 1.4e4 5.8e4

1.6e5

Flops/s
(Gridding)

10e15 1.7e15 1.5e15 1.6e15

UV Buffer,
GBytes

1.1e7 2.8e6 5.8e5 5.6e5

Observation
length, hours

2 0.33 6 6

Archive,
1000hrs of
experiment
(TBytes)

0.08 0.05 7.2e3 9e4

(1000 channels in

image)

Notes 1000hrs on
band 1 and
band 2
together = 428
observations
Science
requires ~1kHz
channels. Only
3.9kHz
available

Science
requires
~3kHz
channels.
Only
3.9kHz
available

Assuming
2kHz
channels.
Spec is
only for
3.9kHz,
not
narrow
enough

Included to ensure
appropriate sizing of
compute for likely use
cases. Assuming
baseline dependent
averaging. Could
perhaps reduce Nchan
in final image much
more. Just keep a
catalogue of sources?

Element Concept 14

Science Data Processor

2.3.1 Limiting cases:

We extract the limiting cases for data rate, processing rate, RAM and UV buffer for the

separate SDP systems (assumed to be in SA for SKA1 Mid and in AUS for SKA1 Survey and

SKA1 Low).

SKA1 LOW / SURVEY (36 beams) :

Data rate out of correlator: 4670 GBytes/s (SURVEY), 842 GBytes/s (LOW)

Max data rate into SDP: 995 GBytes/s

(SURVEY: DRM Ch 3 H1 absorption, proportional to Nbeams, assuming 36)

Max computing load (flops/s): 32 Pflops

(SURVEY: DRM Ch 3 H1 absorption, proportional to Nbeams, assuming 36)

Max UV buffer: 14 PBytes (SURVEY: DRM CH3 H1 absorption)

SKA1 Mid:

Data rate out of correlator: 1800 GBytes/s (BL design page 49)

Max data rate into SDP: 255 GBytes/s (DRM CH3: H1 absorption, band 1)

Max computing load: 10.0 Pflops/s (DRM CH3: H1 absorption, band 1)

Max UV buffer: 11.0 PBytes (DRM CH3: H1 absorption, band 1)

Note that these processing loads are required, so with a 25% efficiency assumed, the

systems built need to be 4-fold bigger.

2.3.2 Continuum surveys with SKA1 Mid and SKA1 Survey:

In the tables we have included estimates for the SDP system for full polarization continuum

surveys (assuming baseline dependent time and frequency sampling) with the SKA1 Mid

and SKA1 Survey though these do not form part of the DRM at this stage. We include these

for reference only, to show that with appropriate parameters these need not drive the

system requiremets.

2.3.3 Non-Imaging Processing

We take Non-Imaging Processing requirements straight from the Baseline Design

Document. We assume a 10% efficiency for pulsar search algorithms, giving a NIP size of

96 Petaflops, assuming that the Pulsar search experiment dominates the requirements.

2.4 Other Inputs and Lessons Learnt

The basis for the Element Concept presented here is the Conceptual Design Review for the

Software & Computing Element held in 2012. In addition to this, we have also consulted on

Element Concept 15

Science Data Processor

lessons learnt from SKA Precursors and also ALMA, which has similarities to the SKA in

ambition, scope and organisation of the design work.

Incorporation of the design elements from the precursors and pathfinders will be achieved

in large part by the full participation of the MeerKAT and LOFAR design teams, substantial

participation of the MWA team and close collaboration with the ASKAP team.

2.4.1 ALMA

The size of the computing design and implementation effort for ALMA is of comparable

magnitude to that expected for the SKA. Although in terms of raw data throughputs and

processing required ALMA presents a significantly smaller challenge than the SKA, the

computing system has many of the same functional requirements as the SKA. Therefore

most of the lessons to be learnt relate to software engineering aspects of the SDP rather

than compute hardware platform. Some of the lessons are:

¶ Capturing the requirements the computing element needs to perform during steady

state operations is obviously important but must be complemented by enumerating

the large amount of extra functionality which is required to develop, debug and

commission the system. These additional features tend to very significantly add to

the complexity of the software and sometimes even to the demands placed on the

hardware (e.g. because of the volume of logging and monitoring messages for

example).

The functionality required for development, integration, debugging and

commissioning should therefore be carefully planned from the outset of the design

phase and implemented early in the development cycles.

¶ Apparently promising or even established software technologies can rapidly loose

popularity, making them difficult to support for the very long design and operations

life cycle of observatories. The example in case of ALMA is the CORBA software

architecture.

This risk can be best tackled by carefully analysing adoption of technologies in a

wide user base before adopting them for the SDP element and extensive contact

with industry about their own software roadmaps. Additionally, difficult choices

about changing the design to abandon technologies must be made once it becomes

clear that a technology will not be supportable in the long term.

¶ Separate scientific data modelling from implementation details.

¶ Release management must be carefully planned and implemented as early as

possible to make efficient use of valuable testing time and the time of testers.

Release of stable interfaces should be prioritised.

¶ System performance and throughput is often limited by poor performance in

unexpected part systems due to apparently simple components which perform

poorly in environment with lots of connection, long running processes, etc. Fixing

each of these in turn can take a long time.

Element Concept 16

Science Data Processor

Design should therefore make basic considerations to efficiency of all components

and functions even if they are apparently simple and not initially expected to be

computational bottlenecks. This suggests that premature optimisation should be

avoided and concentration should be on interfaces.

¶ All users of the software system, with interests in very different data sets, should be

taken into account from the beginning. This includes the interaction with

Monitoring & Control, user-facing software, and back-end software.

2.4.2 LOFAR

Hardware :

¶ Supercomputers, and HPC systems in general, are not designed to handle radio

astronomy signal processing. Extensive and broad research is required to identify
bottlenecks or opportunities early. Don't trust specifications (or even other people's
benchmarks) without extensive testing. It turns out that our applications are quite
different than vendors/industry test for. This may significantly affect real-life
performance compared to the specifications. Industry is often willing to lend or
donate hardware to facilitate testing, but systems like DAS-4 or the open
architecture lab defined in SDP are also essential.

¶ Transporting data, and in particular receiving data, is often expensive (both in
energy and in required compute power) and difficult to optimize; avoid whenever
possible. Designing a compute system in a way that optimizes the most often used
communications path, while reducing the lesser used ones, will avoid bottlenecks
and reduce cost of the total system. This is very different to normal compute system
design. The network, at least within the central processor, and compute resources
cannot be seen as two individual components. These lessons mean that we now
consider the LOFAR central processor (at least the real-time component) as a data
throughput machine. It is designed mainly with the data flow in mind.

Algorithm and Software Development:

¶ Clear requirements are essential. Make choices, do not try to do all at the same time.

This provides clarity and focus. Firewall the groups tasked with deriving scientific
requirements and implementing those requirements. Minimize external
dependencies in the software stack.

¶ Communication is very important. The SKA software will consist of many modules,
with many people developing these. It must be clear all the time what is expected
from every person and what each person can expect from any other person. Only
then can progress be made on the full scope. Interfaces must be clear. Scrum / Agile
development helps, since it gives it is timeboxed and gives focus. It also improves
communication!

¶ Define a version control system for all software components to simplify testing, bug-
fixing, and releases. Define a formal software testing procedure with unit,
regression, integration, and smoke tests. Use this test procedure to validate all
software releases.

Element Concept 17

Science Data Processor

¶ Clearly and formally define all the data products that will be delivered by the
Observatory. These definitions should include all scientific, calibration,
environmental, or other metadata to be delivered. Document their structure and
content formally. Keep these definitions and associated documentation current,
adhere to them strictly, and update them infrequently only after a formal change
control process. Derive a formal set of quality metrics for all delivered data products
based on the scientific requirements. Implement an automatic quality control
procedure to apply these metrics to delivered data products. Define the minimum
set of user analysis and inspection tools required to work with all delivered data
products. Develop these tools internally to the project and keep them synchronized
with changes to the data product definitions.

¶ Implement a formal change control process. Enforce it.
¶ Low frequency calibration is Terra Incognita. Having early (commissioning) data is

essential to make progress. Even then it is a difficult process to come up with
requirements for final implementation in the production system. Define a series of
incremental target performance milestones to build towards rather than a single,
monolithic ultimate performance target with clear requirements for each.

¶ Make the scientific archive part of the overall design from the beginning. Clearly
define its required capacities, functionality, and user interaction models as early as
possible.

¶ Hire professional software developers to write software. Do not depend on graduate
students or astronomical postdocs for production software.

Costs

LOFAR, the Low Frequency Array, is a multi-purpose sensor array. Its main application is

radio astronomy at low frequencies (10-240 MHz), which is described in: M. P. van Haarlem

et al, LOFAR: The LOw-Frequency Array, accepted for publication by A&A, arXiv:1305.3550

[astro-ph.IM], May 2013. For the astronomy application LOFAR consists of an

interferometric array of dipole antenna stations distributed throughout the Netherlands

and in several countries in Europe. These stations have no moving parts and, due to the all-

sky coverage of the antenna dipoles, give LOFAR a large field-of-view. LOFAR is a pathfinder

telescope for the Square Kilometre Array. Due to its configuration flexibility LOFAR is also

referred to as a software telescope. LOFAR infrastructure is shared with other research

areas, and has applications in Geophysics (passive seismic imaging), Infrasound, Agriculture

(smart dust, micro-climate, motes), and spectrum monitoring. LOFAR was constructed in

the period 2002-2010, and was officially opened by Queen Beatrix in 2010.

The total cost of LOFAR, spent in the period 2004-2010 is 102 million Euro. This includes

R&D, project management, procurement and roll-out, part of the commissioning, and initial

operations. It excludes all non-astronomical applications, and it excludes archive and part of

the commissioning and part of pipeline development conducted at universities. This

number also excludes software developments in the period 2011-2013. It also excludes the

Element Concept 18

Science Data Processor

international LOFAR stations, and it excludes the third generation LOFAR correlator,

currently under development (COBALT).

Concerning the Science Data Processor activities, i.e. post correlation/beamforming

processing, 60 FTEs were spent. Assuming a flat rate of 100 Euro per hour spent, and

assuming 1400 working hours per FTE, this amounts to 8.4 million Euro spent for LOFAR

SDP development. The LOFAR SDP software effort is roughly one third of the total LOFAR

software effort spent.

The LOFAR SDP FTE number mentioned above includes:

¶ research (as LOFAR a novel wide-field properties)
¶ requirements, specification, implementation, testing
¶ topics

o input conditioning (a.o. RFI flagging), calibration, imaging
o imager
o calibration
o common software

The LOFAR SDP FTE number mentioned above excludes

¶ archive
¶ monitoring and control, system ÈÅÁÌÔÈ ÍÁÎÁÇÅÍÅÎÔȟ ÃÏÒÒÅÌÁÔÉÏÎȟ ȣ
¶ algorithm development supporting optimization of the real-time processing

capabilities (currently not all SDP modes have a duty cycle of near-100%)
¶ commissioning

Significant resources were spent on the SDP LOFAR archive (Target and Big Grid projects),

part of this is spent on archive research (optimal access pattern research), part on

implementation. These numbers have not yet been split, so it is difficult to derive a useful

benchmark from this.

A first version of an imaging pipeline is running, as well as a pulsar pipeline although the

latter is implemented and funded by external sources, the cosmic ray pipeline runs in a

manually controlled fashion.

Please note that the FTE number mentioned above is indicative only as it is not always clear

to which part of the system a particular developed part should be attributed to. Please also

note that extrapolation of the resource numbers is difficult as there are many nonlinear

Element Concept 19

Science Data Processor

dependencies. Currently, the LOFAR SDP is continuing to improve performance, data

products, duty-cycle, and pipeline automation.

2.4.3 MEERKAT

The MeerKAT Science Processing System is still under development and is approaching PDR

stage. However, a number of important lessons have been learned even at the current level

of development and during the work on the KAT-7 system in the Karoo.

¶ From the outset, a rigorous System Engineering approach has been advocated for

the development of all MeerKAT subsystems. A traditional SE approach has

struggled somewhat to handle software development, particularly with somewhat

undefined requirements. Over the past few years, the SE process has been adapted

for software development to the point that it is now performing an integral part of

the development of the Science Processor. As the SKA is proposing a similarly

rigorous SE approach, this learning will be highly relevant.

¶ The experience is that excess time can easily be spent over refining software for

components that may not have well defined requirements. In this way much effort

can be spent that is subsequently discarded when the real requirements emerge.

The application of Agile like processes to deliver incremental steps that meet the

actual need of the time have greatly reduced wasted effort and improved the

flexibility of the team.

¶ The approach has been to build on the excellent open source community that exists

in the HPC world in general, and radio astronomy in particular. This has allowed

existing work to bootstrap the systems in short order. An accompanying principle

has been adopted of seeking the simplest solution that solves the problem at hand.

By having a lightweight set of underlying libraries the deployment and debug times

have been optimised.

¶ It is all too easy to dismiss interface concerns early on and only pay them scant

attention. Through the experience of iterative telescope construction (PED -> XDM -

> Fringe Finder -> KAT-7 -> MeerKAT) the value of early agreement on interfaces

has been learnt and of ensuring the interface specification is kept up to date.

¶ Lab testing of systems is essential as a first step to solve the basic software and

hardware mechanics, but tests in the field and on the sky reveal more subtle issues

ÔÈÁÔ ÔÁËÅ ÔÉÍÅ ÔÏ ÉÒÏÎ ÏÕÔ ÉȢÅȢ ÄÏÎȭÔ ÕÎÄÅÒÅÓÔÉÍÁÔÅ ÔÈÅ ÉÍÐÏÒÔÁÎÃÅ ÏÆ ÉÎÔÅÇÒÁÔÅÄ

testing and science commissioning.

¶ The development of a comprehensive set of commissioning tools has been an

essential activity. In addition, the ability to interrogate the system at a low level

when required for debugging is essential.

2.4.4 ASKAP

Development of the Science Data Processor for ASKAP pushed forward along many
frontiers. The requirement for massive scale high-performance computing and the inability
to store and transport raw visibilities is a characteristic shared by few telescopes.

Element Concept 20

Science Data Processor

Development of quasi-realtime processing pipelines was unique, with data reduction
traditionally being done on laptops or modest sized workstations. A number of lessons were
learned; both the success of good decisions and challenges are described below:

¶ Steps were taken to ensure the complexity of the ASKAP software system did not

spiral out of control. The most important complexity mitigation factor was the
limiting of the number of observing modes, an option that was possible due to
ASKAP being a survey telescope. Additionally, features that would have introduced
systemic complexity (such as sub-arraying) were purposely avoided unless critical.

¶ Development of emulators for boundary systems is critical. Inevitably, boundary
systems will be delayed and these delays will impact testing and validation
activities.

¶ Develop flexibility into the development process and software system. As ASKAP
introduced a new paradigm of data reduction (specifically quasi-realtime), the
model of operations was not fully understood upfront. Additionally new science
emerged (e.g. study of transient sources that benefited from wide field-of-view)
adding to requirements and requiring additional flexibility in the processing
pipelines.

¶ Development of the public facing science archive was delayed until very late in the
construction schedule. As a result there is some fragmentation in the data model
between the telescope operating system (monitoring and control system), the
central processor (processing pipelines), and the science data archive. It would have
been beneficial to do detailed design and implementation of all three sub-systems
simultaneously if possible.

¶ The capabilities, performance, scalability and efficiency of some third party software
(e.g. casacore) were stretched to the limit and often far beyond in ASKAPsoft. It is
likely that much of this software that has formed the backbone of
precursor/pathfinder software will be inadequate for SKA. The expense of re-
engineering this software should not be underestimated.

2.4.5 MWA

The Murchison Wide Field Array (MWA) deployment has been finalised end of 2012, full
operations will start in July 2013. The array has already produced more than 150 TB of data
during commissioning and science verification and substantial amount of data is routinely
replicated to the MIT in Boston. The MWA is a fairly small project in terms of overall
resources compared to ASKAP, MeerKAT and LOFAR, some care is required in making
comparisons and applying lessons learned.
The MWA went through a very rough period of funding and project management issues. As
a typical university collaboration project, project management or system engineering had
not been given a high priority and requirements had not been fixed. After extensive re-
baselining and de-scoping, the situation improved considerably mainly due to the
introduction of professional project management.

Lessons learned:
¶ Proper project management with excellent connection and oversight of the various

work areas is key to a successful, on-time and on-budget delivery.
¶ Having key personnel really dedicated to the project helps enormously.
¶ MWA has very successfully re-used the ALMA/ESO core archiving system (NGAS).

Although originally designed for much lower data rates it seemed to be the best

Element Concept 21

Science Data Processor

starting point to fit the available, very low budget and the anticipated requirement
of moving data on media rather than through the network. Re-use of existing
solutions (software) is possible, but the software has to be known in great detail,
needs to be flexible enough by design to accommodate new requirements and the
implementation of additional modules/functionality should not require changes to
the core software. It is also important that new developers can pick-up the code and
understand it within a finite amount of time. If all of these points are satisfied, the
first step should be to design various test cases in order to verify the performance
using realistic data rates and a realistic deployment.

¶ Offering a working, robust and easy-to-use service will produce new requirements
and wishes, in particular if people had been used to do things manually before.

¶ Don't underestimate the imagination of users implementing scripts around your
services, but don't trust any of these solutions to be implemented in a secure or
efficient way. They may well break your whole system looking like a DoS attack. The
real lesson learned here is: Watch the real users doing their work using your
services/system. This is the only way to find out the actual user requirements.

¶ Performing lots of tests and simulations early on is very reassuring, but nothing can
replace enough time for field testing.

¶ Eliminate as far as possible dependencies from external entities where there is no
leverage of getting things delivered. There must at least be a service level agreement
or similar.

Element Concept 22

Science Data Processor

3 Element Architecture Concept

3.1 Basic Considerations

3.1.1 System Decomposition

The architecture should decompose the software system into functional components. The

data flow, and the associated processing, will also determine optimal architectures for the

hardware system. These two aspects are of course intrinsically linked. The philosophy

behind the identification of components and assignment of responsibilities takes into

account the following priorities:

1. There should be delineation between functionality that is deployed with the

instrumentation (in potentially hostile operating environments) and that which may

be deployed anywhere, depending upon available network connectivity.

Functionality by default should be deployable at any location, unless there is a

specific reason why such functionality needs to reside at a remote site. This is due

to the fact that maintenance and support is more difficult and costly at a remote site.

However it may be necessary when considering data flow to locate aspects of the

physical infrastructure to accommodate other constraints (e.g. maximum data rates

from the observatory site).

2. As far as possible the functionality should be defined generically, and be

independent of the collector technology and physical location of a given element.

3. Responsibilities should be assigned to components in such a way as to result in

simple interfaces and to minimize dependencies between components. This aims to

drive accidental complexity out of the system. This is one of the strongest drivers

involved in the identification of the scope of each identified component.

4. Components should be sufficiently abstracted and loosely coupled to account for the

possibility that the software may be developed by a distributed team. Allowing a

sub-team to work somewhat independently on various components is a highly

desirable, and perhaps essential, goal.

3.1.2 Loose Coupling

The SKA software system must be flexible and scalable with respect to development,

deployment and maintenance. Requirements are expected to change as more is learned

about the system, the science that will be done with it, and the manner in which the system

will be operated. Moreover the hardware of the SDP is expected to be refreshed on a

timescale commensurate with the operation of other HPC facilities ɀ the SDP system and the

software architecture must therefore be designed to facilitate such a refresh cycle with

minimal on-going investment.

Key to fulfilling this goal is loose coupling, where dependencies are minimised and

modifications have minimal effect on the system as a whole. At a minimum, sub-systems

should be loosely coupled in the following areas:

Element Concept 23

Science Data Processor

¶ Hardware platform independence ɀ software can be developed and deployed on a

variety of hardware platforms.

¶ Language independence ɀ software can be developed in multiple programming

languages.

¶ Operating system independence ɀ software can be developed and deployed on a

variety of operating systems.

¶ Implementation independence ɀ differing implementations of the same software

components should be pluggable at runtime.

¶ Location and server transparency ɀ components should operate independently of

their locations.

¶ Asynchronous communication - where possible, the sender and receiver of a

message should not need to be synchronised.

It is, however, understood that for the components that must deal with high data rates, such

loose coupling is not an appropriate goal. Rather these components will be more tightly

coupled due to the need for dedicated high-bandwidth networks and highly optimised data

transfer protocols. This drives an architecture in which loose-coupling as a principle is

maximised for the majority of components, and strong coupling is isolated in specific

components or frameworks.

3.1.3 Reliability and Robustness

The SKA computing system will be designed to be a mostly automated instrument and will

spend much of its time carrying out observations and data processing with minimal human

interaction. In order to support this goal the computing system must where possible be

reliable, robust and be able to gracefully handle failure. Development of components should

consider the following:

¶ Have the ability to operate in degraded mode where appropriate.

¶ Identification of single points of failure, especially where the failure may impact the

entire SKA system or impact the ability to diagnose faults. This is likely to be

relevant to location services, alarm management, logging and monitoring

components.

¶ Support the deployment of redundant / high-availability services where possible.

This is expected to be possible where services are stateless or idempotent.

Unlike most previous telescopes the SDP element for the SKA will be in large part a pseudo

real-time part of the whole system. Reliability of the SDP element is intimately linked to

the overall system performance in a way more analogous to, for example, correlators are in

current telescopes. An integrated local monitor and control system with appropriate health

monitoring feeding back into the Telescope Manager is a critical component of the SDP

element.

3.1.4 Support Technology Evolution

The design and construction phase of the SKA will take approximately a decade, with

operations continuing for many decades. Even during the design phase it can be expected

Element Concept 24

Science Data Processor

that many candidate technologies will be superseded. For this reason the software

architecture must provide intrinsic support for the evolution of technologies for software

and hardware components.

3.1.5 Promote Software Consistency

Development of SKA software is likely to be distributed over multiple teams, including

those outside the OSKAO. Unless carefully managed, this may lead to fragmented software

development processes, design and implementation. The architecture must aim to limit this

fragmentation and promote consistency.

3.2 Functional Analysis

A preliminary functional analysis of the SKA Science Data Processor was undertaken as one

of the initial activities when planning the technical RFP response. The development of the

Functional Flow Block Diagram (FFBD), and its associated description, plays a vital role in

performing the system decomposition into primary functional blocks and their associated

data flows. In turn this information informs the development of the data flow model and

our preliminary decomposition of the system. Combining the functional analysis with an

analysis of the non-functional requirements, leads to a well-structured, and comprehensive,

Work Breakdown Structure (WBS).

The FFBD is broadly structured along a variety of top-level themes that group the functional

elements; these groups are described and expanded upon below.

The functional analysis presented is based on the system concept presented in the CoDR.

We expect the functional description of the system to evolve as the detailed design work is

progressed through to PDR.

Element Concept 25

Science Data Processor

Element Concept 26

Science Data Processor

Element Concept 27

Science Data Processor

Element Concept 28

Science Data Processor

3.2.1 Control and Monitoring

In broad terms this theme describes the interaction between the SDP and the balance of the

SKA facility, which is in general delivered by the Telescope Manager (TM) subsystem.

3.2.1.1 Control

It is anticipated that the SDP will be treated in a black box fashion by the TM. That means

that control of the SDP will be at a relatively high level, with the detailed, and domain

specific, control hidden behind a higher level API. This block is responsible for providing the

appropriate API outward to the TM, and the required functionality inward to the SDP to

ensure that command and control can be enacted as desired by the facility. A complete

description of the API will be detailed in the SDP-TM Interface Control Document.

3.2.1.2 Data Flow Management

Given the essential role played in the SDP by data and the movement thereof, special

attention needs to be paid to management of data throughout the SDP. This interface will

expose functionality to operators and system maintainers to allow them to evaluate, and

control data flow as needed in order to ensure optimal use and availability of the SDP.

3.2.1.3 Health monitoring

It is expected that the TM will impose a standard set of health sensors that must be exposed

by each telescope subsystem in order to determine the current health of the subsystem.

Through this function the SDP will provide these standard health sensors, and provide

additional health data that may be required by operators and maintainers to fully manage

the SDP.

3.2.1.4 Metrics

In addition to basic health monitoring sensors, the SDP will be responsible for providing a

range of implicit and derived metrics as part of its standard mode of operation. For

example, the SDP will likely be required to produce reference pointing information for use

by the TM in observations demanding higher pointing performance. This information would

be provided to the facility as a calculated metric. Other examples include the production of

quality assurance metrics that pertain to the current observation and can be used by the

operator to evaluate system performance as a whole.

3.2.2 Delivery

3.2.2.1 Astronomer Interface

Although interfaces to the current and archived observations will be provided through

mechanisms provided by the SDP and TM subsystems, the actual delivery of scientific, and

in some cases raw data, to the customer is a function can often be overlooked in the initial

phases of development. As part of the development of this functionality a full needs analysis,

in concert with the operational model of the facility, will need to be conducted.

Element Concept 29

Science Data Processor

3.2.2.2 Public Interface

The funding for large scientific projects is in part predicated on the public interest sustained

by these projects. An important part of the SKA will be to produce public ready information

and data, and the SDP is best positioned of all the subsystems to produce meaningful and

high impact public data. From simple efforts such as picture of the day services, through

more complex interventions designed to support particular policies or funding channels,

this function will likely evolve int o a significant overall effort.

3.2.3 Science Analysis

As has already been mentioned, a strict downstream boundary to the SDP has not been

clearly identified. As such, further analysis of scientific data products may fall within the

purview of the SDP. Even if such functionality is not explicitly delivered by the SDP, tools

and APIs that facilitate these functions may well be.

3.2.4 Input Conditioning

3.2.4.1 Ingest

The primary flow of data into the SDP is delivered from the Correlator - Beamformer (CBF)

function provided by the Central Signal Processing subsystem. This data takes the form of

either visibility or time series data and typically requires a number of conditioning steps

before use in the remainder of the SDP. In particular the data is often delivered at a higher

data rate than strictly required for the science at hand. This is due to several factors

including reducing correlator modes through superset data production, shortest common

dump periods to prevent time smearing and fine channelisation to facilitate efficient RFI

flagging.

The ingest function provides this conditioning step, and is primarily concerned with

reducing the data rate produced by the CBF to one that matches the science processing

required for the current observation. In addition to this reduction, several steps of data

conditioning may be required depending on the final design of the CBF.

The ingest function also provides the opportunity to perform upfront processing in order to

deliver metrics, such as gain solutions, to other telescope subsystems in quasi-real-time.

Finally, the ingest function may also be used to combine meta-data supplied by TM into the

science data stream to allow downstream pipelines to operate on a single packaged data

stream. Functionally, ingest could include the following:

¶ Scaling and format conversion (e.g. Int32 to Float32)

¶ Van Vleck correction to ameliorate the effects of quantiser stages in the CBF

¶ RFI flagging

¶ Gain calibration performed in real-time to be used in Quality Assurance and

beamformer weighting

¶ Averaging both temporally and spectrally. It is likely that baseline dependent time

averaging will be used to lower the overall data rate.

Element Concept 30

Science Data Processor

¶ Metadata aggregation and insertion.

¶ Calculation and application of phase/time delays to allow formation of beams

¶ Removal of signal from contaminating sources that enters through Primary Beam

sidelobes (a.k.a. A-Team subtraction)

3.2.5 Output Conditioning

3.2.5.1 User Supplied Equipment Interface

Although specified to deliver science quality data up to level 5 (as per the baseline design

document), it is likely that specific experiments may emerge during operation of the facility

which require specialist analysis modes. For this reason provision will be made to interface

to User Supplied Equipment (USE) and provide them with data (and meta-data) suitable for

use in a variety of scenarios.

This function caters for this need by providing the ability to down sample, format, and

otherwise modify telescope data to match the desired input to the particular USE. In

addition, it is highly likely that this function will also merge required meta-data with the

main data flow in order to simplify the interface between the USE and the telescope.

3.2.6 Virtual Observatory

The ability to provide data and meta-data in a format usable to the various Virtual

Observatory efforts will be an important component of ensuring data delivery to end-users.

It will be accomplished in the most time efficient and cost-effective manner allowed by the

particular policies in place for any particular observation. This function will have tight

integration with t he various data layer services.

3.2.7 Platform Services

3.2.7.1 Platform Management

The SDP will rely on an extensive underlying HPC platform that will provide computational,

transport and storage services to the functions involved in telescope operations. Given the

likely extent, and complexity, of this platform, a dedicated management function is required

to ensure availability and to support maintenance tasks that will need to be carried out by

telescope staff.

3.2.8 Data Layer

3.2.8.1 Archive

The archive refers to the hardware and software platform that will enable the storage (and

possibly re-processing?) of telescope data products for extended periods of time. This may

include any level of data product produced by the facility, but generally will be limited to

scientific output such as images and catalogues together with associated metadata. The

storage of visibility data remains an open question and one that will have a significant effect

on the archive design and feasibility.

Element Concept 31

Science Data Processor

3.2.8.2 Buffer

Short term storage of data products including visibilities and raw voltage data is required at

a number of points in the processing chain. These buffers may be used for temporary high

resolution storage which can be revisited on a transient trigger, interim storage of visibility

data during a calibration interval, and a number of other tasks related to data processing.

3.2.8.3 Data Transport

Internal data transport is within the province of the SDP and is responsible for the

movement of high speed science data, low speed meta-data and control data between the

various components of the SDP.

3.2.8.4 Database

Distinct from archival storage, database functionality is required by a number of

components within the SDP. The functions provided by the database include a broad range

of catalogue services, including global sky models, instrumental configuration, beam

patterns, key-value storage etc...

3.2.9 Support

3.2.9.1 Commissioning

Timelines for development often concentrate on the final delivery of the system, and some

systems may not exist at all before being delivered to final scale in order to support full-

scale operations. For this reason it is imperative that alongside a detailed commissioning

plan, functionality dedicated to the support of commissioning throughout the construction

cycle is provided by the SDP. Some of these functions may be temporary and only used in

unique small scale configurations or to support manufacturer acceptance testing.

3.2.9.2 Expert mode

It is envisaged that a manual mode where operators / support scientists can use the system

by hand, instead of using the automatic pipelines, will be required. This will be especially

important in early operations, when the desired maturity of the automated pipelines may

not be present.

3.2.9.3 Simulation

A range of simulation capabilities are required within the SDP for the support of both

internal development and external integration with other subsystems. For internal use a

data simulator that produces representative data at a variety of stages (pre-ingest, post-

ingest, post-image, etc...) will be highly beneficial for sub-component developers. Science

quality simulators that can be used for scientific support and observation planning can be

developed alongside functions such as the processing pipelines. For integration testing of

the facility a control / health simulator that can be used by TM in system mockup testing

will likely be required.

Element Concept 32

Science Data Processor

3.2.10 Time Series Processing

3.2.10.1 Flagging

Flagging, and in particular automated flagging, will play an essential role in producing high

fidelity scientific output from the SKA telescopes. Flagging in this context includes the

identification of RFI, data flagging based on experimental setup, and flagging due to

instrument failure.

The task of flagging will be split between the ingest functions and the flagging pipeline.

Ingest flagging offers access to higher time and spectral resolution data, but processing

overhead could dictate that only simple algorithms are used to detect flag conditions.

The flagging pipeline will have a significantly lower data rate, but will have more processing

power available to it, and can work in concert with other pipelines to deliver an optimal

flagging solution.

Flagging will include:

¶ RFI flagging (both apriori and real-time detection)

¶ Edge effects flagging

¶ Glitch flagging

¶ Flagging for bad calibration solutions

¶ Flagging on instrument degradation data provided by TM

¶ Flagging of parts of the data, e.g. on baseline restriction, time/freq subsets, etc. (E.g.

for processing the data in multiple runs, but not starting on the full data resolution)

N.B. If the data is to be processed multiple times (e.g. through the use of a buffer) then it

would be useful to be able to clear flags.

3.2.10.2 Dedispersion

For both timing and searching functions dedispersion of the time series data will be

required to undo the effects of propagation through the ionised interstellar medium. For

pulsar timing, coherent dedispersion involving direct removal of the offending transfer

function across the band will be used. This is required to provide the highest fidelity timing

results.

For the searching activities, per-channel dedispersion will be performed, as the

requirements for multiple trial DMs is likely to prohibit the use of the computationally

expensive coherent approach. In the case of coherent dedispersion, input values of

dispersion will be needed: multiple observations may take place at once and therefore

capability for multiple independent inputs/beams is needed. In the case of searching, the

details of the dispersion tria ls will be pre-determined.

In both cases at this stage there may be frequency, time or polarisation decimation.

Element Concept 33

Science Data Processor

3.2.10.3 Folding

Accurate pulsar timing requires a number of steps grouped under a folding function,

including folding itself and a variety of time based corrections to correctly calculate the

Time of Arrival (TOA).

Accurate time tagging of the data will be essential in this stage, input values, such as the

pulsar ephemerides will be required.

3.2.10.4 Periodicity Search

Searching for pulsars, or other periodic events, requires searching through a combination of

DM, acceleration and periodicity trials.

3.2.10.5 Impulsive Search

In this search regime we are searching for purely transient phenomena or infrequently

repeating phenomena that do not yield greater signal-to-noise through periodicity trials.

3.2.11 User Interface

3.2.11.1 Data Flow

As has already been mentioned, the flow of data and its effect on the storage and

computation platform underpinning the SDP is a major administrative challenge. Having a

rich interface available to operators and maintainers will allow the data flows to be

accurately studied and directed in order to ensure optimal performance.

3.2.11.2 Pipeline Interface (expert mode)

One of the medium term goals of the SDP is to produce pipelines that will produce high

quality scientific output without significant human intervention. This should not only

include areas such as data flagging but also extend to imaging parameters and algorithm

choices. However, not only will the development of appropriate pipeline algorithms and

heuristics take significant time to produce, but there will always be a call from expert users

to have more hands on control of the processing steps. This interface will allow such expert

intervention, presenting the end user with a far more complete set of tuneable parameters

than would otherwise be exposed through the observation planning tool.

3.2.11.3 QA Displays

With a facility of the scale of the SKA it will be imperative that operators can obtain real-

time feedback about the quality, and scientific integrity, of the data being produced. The

Quality Assurance displays will provide telescope operators with detailed, real-time

information on a variety of system metrics. These will include raw data validation displays

such as total power, spectral and phase plots, as well as intermediate processing results

such as calibration solutions and dirty images.

These displays will be required to reduce potentially hundreds of thousands of individual

metrics into a concise, legible user interface that can easily be used by the telescope

operator to track and diagnose system faults.

Element Concept 34

Science Data Processor

3.2.12 Visibility Processing

3.2.12.1 Calibration

The calibration pipeline derives calibration parameters that are needed to correct visibility

data in mitigation of a variety of instrumental effects that are introduced by the signal chain

and telescope environment. More so than the other pipelines, the calibration pipeline is

expected to have a number of distinct implementations in order to accommodate the

multiple telescopes making up the SKA observatory.

3.2.12.2 Flagging

As per 3.2.10.1

3.2.12.3 Gridding

It is assumed that traditional, low risk methods will be used for imaging in SKA phase 1.

This model in turn requires a gridding step in order to regularise the UV data to allow a FFT

to be used to transform between the image and visibility domains. Functions provided by

this pipeline will include:

¶ Gridding

¶ De-gridding

¶ Computation of convolution kernel (e,g, for W- and A-projection)

¶ UV data sorting / routing for gridding

3.2.12.4 Imaging

The imaging pipeline will transform appropriately calibrated and gridded UV data into

image cubes. It forms an integral part of the overall scientific reduction process and may

operate in conjunction with other pipelines in either a closed or open loop fashion.

3.2.12.5 Image-plane elements

A range of image plane functionality will be provi ded by this pipeline including:

¶ Image re-projection (e.g., used in snapshot imaging)

¶ Applying image-based calibrations

¶ 2d FFTs

¶ Combining images

¶ Filter and find peaks in images

¶ Image-based clean loops

¶ Source Extraction and Regularisation

Element Concept 35

Science Data Processor

3.3 Component Breakdown

A component breakdown forms an essential part of our requirement analysis process. It

allows us to validate our functional analysis by checking that each functional element is

provided by a corresponding physical component.

It also provides insight into work breakdown and organisation, and can be used to

apportion tasks to members of the consortium along structured lines. In line with the first

pass functional analysis performed elsewhere in this document, a first pass component

breakdown is presented here. This should be treated as a draft, and is primarily included to

give insight into the requirements analysis process that will be carried out in detail during

the preconstruction phase. A brief description of each component that has not been

described in the functional analysis is provided to further aid understanding.

3.3.1 Common Hardware

As an industrial scale facility, Integrated Logistics and Support (ILS) planning will play a

major role in ensuring high system availability and maintainability over the multiple

decades of operation. Key to enabling the ILS operation from a hardware perspective is

common hardware, that not only reduces the spares count needed to be carried, but also

greatly simplifies the range of supported components the on-site technicians will need to be

masters of. In addition, common components will provide greater economies of scale during

the procurement phase.

Nodes: Although custom hardware is likely to be unavoidable, where possible the SDP, and

indeed the telescope as a whole, will be advised to produce a small range of standardised

compute nodes. These can be provided in several standard flavours such as IO heavy, FLOP

heavy, general purpose etc... A limited set of disparate nodes will also provide good

opportunities for online hotspares and self-healing systems.

Switches: Although the bulk data provision into the SDP is provided by another subsystem,

the provision of internal networking infrastructure will be important. This not only needs to

service the internal bulk data needs, but also handle management, control and monitoring

tasks. To limit energy consumption, internal data transport should be avoided wherever

possible.

Infrastructure: Basic infrastructure such as 3 phase power and rack space is to be

provided by the infrastructure group, however local infrastructure such as Power

Distribution Units (PDU) and equipment racks need to be specified by the SDP. In particular

opportunity exists here to tailor some of the physical infrastructure to the needs of the SDP.

For instance using the Open Rack standard may lead to significant cost savings versus a

commercial offering.

3.3.2 SDP Master Controller

The master controller serves primarily as the bridge between the SDP and the Telescope

Manager (TM) subsystem. It is responsible for enacting internal control based on

commands received from TM, and in turn providing a view of the health and state of

Element Concept 36

Science Data Processor

internal resources back to the TM to allow for quality assurance analysis and resource

scheduling. In practice it is likely to be implemented as a tiered set of physical components.

SDP Proxy: The proxy is the actual software component that bridges internal and external

command and control protocols. It is hoped that the same protocols will be used, but this is

not mandated. The proxy will contain significant simulation capability that will allow the

TM to test interaction without a full-scale SDP and vice-versa allow the SDP to operate

without a fully function TM to control it.

Management Components: Control and management of the SDP is likely to be broken into

several major themes, including the processing pipeline, the underlying platform, and data

flow. Each of these areas will have a dedicated management component that will be

responsible for services such as process and health monitoring, routine maintenance,

performance management and queuing.

3.3.3 Role Specific Hardware and Software

Much has been made of the desire to drive commonality, both in the software and hardware

realms. This is certainly a desirable goal, and in a geographically diverse project such as the

SKA, it will be essential to have robust common underpinnings to allow collaborative work

to come together seamlessly. However, the reality is that SKA Phase 1 involves the

construction of three distinct telescopes sited in two disparate locations.

There will inevitably be areas in which software and hardware that are tailored specifically

to those operating environments and telescope requirements will be needed. In essence,

Ȱrole specificȱ implies commonality, just with a smaller focus. For instance it may be that

one of the sites provides DC power into the data centre. It would then make clear sense to

have a common power supply component that can handle DC power, but make it common

only in a role specific fashion.

On the software side, common grouping along the lines of the individual telescopes is likely.

For instance, flagging software may contain many common components (such as data

access), but have distinct modules that cater for distinct frequency regimes and differing

fields of view.

Thus, any component is likely to consist of common software, role specific software,

common hardware, role specific hardware and the custom code that implements that

particular functionality of that component

Element Concept 37

Science Data Processor

Element Concept 38

Science Data Processor

3.4 Data flow

The data flow within the SDP is part of the overall data lifecycle which is illustrated below.

This lifecycle diagram particularly emphasizes the role of the Observatory in managing all

steps of the observation process from proposal submission to scientific result. An approach

such as this (or similar) would be necessary in all circumstances.

Within the SDP domain the data flow is taken as an ingest process from the correlator. The

data flow is similar on the two sites and we consider therefore a single data flow, which we

apply to both sites. In the case of the Australian site we further assume that the output of

the correlator/beamformer is the combined output from the SKA1_LFAA and SKA1_SURVEY

instruments. The data rate specified in the Baseline Design exceeds that required for any

specific experiment. The ingest processor we therefore regard as providing the additional

processing required to perform data selection.

The Baseline Design also excludes all aspects of the data management off-site. As discussed

in detail in the introduction we believe it is essential to analyse all of the data flow through

to the end user so that proper assessment of both total costs of ownership and operational

models can be made in a manner which is properly informed by technical considerations.

The data flow context is taken from the RFP

Element Concept 39

Science Data Processor

The level 1 Data Flow Diagrams are shown below

Science Data Processor Local M&C

Science Data Processor

Telescope Manager

C
o

rr
e

la
to

r
/

B
e

a
m

fo
rm

e
r

Data Routing Ingest

Visibility

processing

Multiple

Reads

Time Series

Search

Multiple

Reads

Data BufferData Routing

Time Series

Processing

Image Plane

Processing

Data

Prodcuts

Sky Models,

Calibration

Parameters ...

Meta Data

Master ControllerMaster Controller
Local M&C

Database

Tiered Data

Delivery

Element Concept 40

Science Data Processor

Elements to note in this data flow include:

¶ Data routing is considered a key aspect of the overall data flow and is shown

explicitly. By appropriate data routing the design aim is to make the data

embarrassingly parallel where this is achievable.

¶ The initial ingest phase will provide data editing and flagging, possible phase

rotation, assimilation of the metadata into the SDP data structures and averaging

thereby providing experiment selection depending on the averaging performed.

¶ The Data Buffer is explicitly included to perform two functions. The first is to enable

iterative algorithms to be included in the work flow. This requires a write once read

N buffer where N is the number of iterations. The second function to be performed

by the buffer is load-balancing. It gives the ability to load-balance the processing

system by scheduling a long low data-rate, low computational-cost experiment

following a high data-rate, high computational-cost experiment and buffering the

former until the processor has completed the second operation. The data buffer is

shown after a data routing step so that the data are optimally organised for the

processing step.

¶ Two main pipelines are shown ɀ visibility and time-series processing. Other

pipelines are variants on these (transient detection via fast imaging) or not shown

explicitly (direct analysis of visibility data for EoR power-spectrum measurements).

¶ Three databases are show, one for sky-models, one for calibration parameters etc.,

and an archive of final data products and a database for local monitor and control

information.

¶ A master Controller is connected to all components of the system as well as

providing hardware and HPC monitoring and control functionality. The Master

Controller provides a single interface to the Telescope Manager.

¶ The Master Controller also provides various expert-level views into the system and

manages overall control.

Tiered Data Delivery

Astronomer

Regional Centre

Cloud

Sub-set of

Archive

Data

routing

Regional Centre

Sub-set of

Archive

Regional Centre

Sub-set of

Archive

C
lo

u
d
 a

c
c
e
s
s

SDP Core Facility

South Africa

SDP Core Facility

Australia

Element Concept 41

Science Data Processor

¶ Data are pushed from the main on-site data archive to regional data centres. The

default model is that data are not duplicated between these centres. Centres

provide both local data archives and HPC compute resource shown local to the data.

Additional processing resource for end-user astronomers is shown to possibly occur

in the cloud.

¶ User interaction is via web services with low-bandwidth traffic to the end-user

astronomer desktop.

¶ Not shown is the possibility of a unified user interface provided via the cloud

services which completes the data-lifecycle interface for the end user.

We have for our preliminary architectural work completed a data flow analysis to level 2 for

key elements of the pipeline. These are shown below for the basic time series search and

imaging pipelines

Time Series Data Flow Analysis

Element Concept 42

Science Data Processor

Imaging Data Flow Analysis

3.5 Outline Architecture

3.5.1 Hardware Architecture

3.5.1.1 Elements of the Architecture

We consider in our preliminary architecture that there are the following possible elements:

¶ Ingest processor including routing capability.

Element Concept 43

Science Data Processor

¶ A data parallel processing system with local storage provide the data buffer linked

to the ingest processor via a routing element. For SKA1 this system must provide a

highly connected parallel processor capable of O(100) PFlop on each of the SA and

AU sites.

¶ A data product archive which is a tiered data archive with fast access to data

products generated within the past year and a higher latency archive (possibly tape)

of all data products. The size of the archive is determined by the detailed scheduling

of the facility, but based on the analysis discussed above the fast-access archive size

ɉÁÓÓÕÍÉÎÇ ÏÎÅ ÙÅÁÒȭÓ ×ÏÒÔÈ ÏÆ ÄÁÔÅɊ is O(20 - 100) PBytes in SA and in AU. Data in

the long -term arc hive grow at this annual rate . In our costings we have

allowed for ρ ÙÅÁÒȭÓ ×ÏÒÔÈ ÏÆ ÄÉÓË-based archive only .

¶ Master Controller and data archives. These are presumed to be physically distinct

platforms. Their design is not considered in any detail here as they are not

considered cost drivers.

3.5.1.2 Overall Architecture

Although we discuss the individual components of the system here, in practice a design

consideration will be to eliminate task-specific components where possible. Below this is

effectively achieved by considering a standard computational unit for our processing

architecture. We also assume identical architectures for the two sites differing only in their

size. The overall architecture is illustrated in the following diagram.

Note that all pipelines map onto our decomposition of the system described above.

3.5.1.3 Components

At this preliminary stage we take a conservative approach to the design of these individual

components and consider components to be of similar architecture to existing technologies

with performance scaled to 2018 using conservative predictions from industry roadmaps.

We take as input to the latter the road-mapping analysis presented at the CoDR. We now

consider the components from which the SDP architecture we have considered may be

constructed.

é
Incoming

Data from

Correlator,

beamformer

S
w

itch

B
u
ffe

r sto
re

Switch

B
u
ffe

r sto
re

HPC

B
u

lk
S

to
re

In
g

e
st

P
ro

ce
sso

r

U
V

P
ro

ce
sso

r

Imaging:

Non-Imaging:

Corner
Turning

Course
Delays

Ingest, flagging Visibility
Steering

Observation
Buffer

Gridding
Visibilities Imaging

Image
Storage

Corner
Turning

Course
Delays

Beam
Steering

Observation
Buffer

Time-series
Searching

Search
analysis

Object/timing
Storage

R
e

g
io

n
a

l D
a

ta

C
e

n
tre

s

Ingest, flagging

Element Concept 44

Science Data Processor

The processor unit we consider is based on existing accelerator technology with a very

conservative extrapolation to 2018 / 2020 . The processor blade is closely modelled the

hardware considered for the new LOFAR correlator. This system is based on Dell

PowerEdge T620 systems, briefly:

¶ Dual Xeon® E5- 2600 processors each

with eight cores

¶ PCIe Gen3-capable expansion slots

(15.75 GB/s max)

¶ Up to 768GB RAM capability

¶ Dual GPU slots

¶ σς ÂÁÙÓ ÆÏÒ ςȢυȱ ÄÒÉÖÅÓȟ 33$

¶ Can accommodate two 56Gb/s

Infiniband ports

¶ Can accommodate two 10 or 40 GbE

NICs

¶ Redundant 1100 Watt power supply

¶ 5U high rack mounting

These systems are quite large and there are few systems currently available with the same

specifications in a smaller form factor, even though this should be feasible. For the purpose

of this document we (conservatively) assume that future blades will require 2U of rack

space.

Assuming we use technology from ~2018 (see example accelerator roadmap below), each

of these blades will deliver a peak performance of around 64 TFlops, with a relatively low

power envelope. Using 2020 technology will conceivably double this performance per

blade. This estimate only takes accelerator performance into account, the host processors, if

still requir ed, will add significant additional computational resources, but are ignored for

the purpose of this document. Up to twenty of these blades are assembled into standard 42u

high racks. The data buffer is maintained local to the processing core for the data parallel

element which needs access to the local data buffer. The disc elements can be omitted when

the blade is used in a context when the data buffer functionality is not required.

The assumed performance of each blade is very conservative. The following table gives the

published NVIDIA GGPU roadmap and a realistic extrapolation to 2020:

Card name Release year SP Peak performance

Fermi 2010 1.0 TFLOP/s

Kepler 2012 4.0 TFLOP/s

Maxwell 2014 8.0 TFLOP/s

Volta 2016 ? 16.0 TFLOP/s

Unknown 1 2018 ? 32.0 TFLOP/s

Unknown 2 2020 ? 64.0 TFLOP/s

Host processor

Multi-core X86

A
C

C
E

L-1
 -

>
1

0
T

F
L

O
P

/s

A
C

C
E

L-2
-
>

1
0

T
F

L
O

P
/s

To rack

switches

Disk 1
җм¢.

56Gb/s

PCI Bus

Disk 2
җм¢.

Disk 3
җм¢.

Disk 4
җм¢.

Processing Blade:

GGPU or

MIC

Å 20 TFlop

Å 2x56 Gb/s comms

Å 4 TB storage

Å <1kW power

Å Capable host (dual

Xeon)

ÅProgrammable

ÅSignificant RAM

Blade Specification

Element Concept 45

Science Data Processor

Our analysis of 1 kW/blade is arrived at as follows. The power requirement per GPU,

currently the TESLA K20xmodule, is maximum 235 W, and a blade power of requirement of

470 W for the GGPU. The main memory power requirements are about 4Watts per ECC

module. A modern system today contains 8 or 16 of these modules, requiring up to 72

Watts. Each CPU adds around 100 Watt. Network and interconnect add ~25 Watt for each

interface, up to four of these are expected to be required per node. The

discs, if installed, add another 10 Watt each. This adds up to 882 Watts per

node. Assuming the power envelope remains constant for these

components (again conservative), and adding some headroom, we assume

the maximum possible power draw for each processor blade to be 1kW.

The processor racks (left) are made of up of 20 processor blades and two 36

port switches. Each switch connects to one 56Gb/s port on all 20 blades

giving good interconnect within a rack. The second port is connected to the

data routing unit. The power required by the leaf switches in the rack is

217watts each max. Hence the maximum total power for a rack is ~20kW.

The data routing unit is based on existing switch technology. The example

we consider is the Mellanox SX6536 switch which has the following

specification:

¶ Non-blocking switch, 74.52Tb/s switching capacity

¶ 648 off 56Gb/s ports

¶ Supports active fibre or passive copper data links

¶ 29U high rack mount

¶ Power max. 10kW

Even based on current performance this device meets the requirements

for the data routing element within our concept.

The bulk store is likely to be a large storage sub-system using a major

file management system. As a current example, we consider the Xyratex

ClusterStor 3000:

¶ Single rack

¶ Lustre file system

¶ Capacity 1.3PB expandable to 30 PB

¶ Infiniband

¶ Power 18.5kW

We assume 20kW per rack for budgeting purposes. We assume a similar capacity evolution

in storage as in compute. Even though the growth rate of storage currently exceeds that of

processing capacity, it is likely that some physical limits will be reached within the SKA1

Processing blade 1

Processing blade 2

Processing blade 3

Processing blade 4

Processing blade 5

Processing blade 6

Processing blade 7

Processing blade 8

Processing blade 9

Processing blade 10

Processing blade 11

Processing blade 12

Processing blade 13

Processing blade 14

Processing blade 15

Processing blade 16

Processing blade 17

Processing blade 18

Processing blade 19

Processing blade 20

Leaf Switch-1 56Gb/s

Leaf Switch-2 56Gb/s

42U Rack

Element Concept 46

Science Data Processor

timeframe. We therefore assume a conservative growth rate of a doubling of capacity per

Euro every two years.

3.5.2 Software Architecture

The software architecture we consider in this preliminary design draws heavily from

existing projects such as ALMA. We have three layers to the software architecture:

¶ Application layer

¶ Common software layer

¶ HPC services and Operating system layer

The aim is to achieve loose coupling in the higher layers of the software stack and introduce

tight coupling in the lower layers as required for performance. Some elements of the lowest

layer are likely to be procured with hardware. All layers of the stack will conform to closely

specified interface definitions to enable strong system decomposition.

The common software layer may itself be subdivided further as illustrated in the following

diagram which is taken from the CoDR documentation set.

3.5.2.1 Base Tools

The base tools layer contains tools that are distributed as part of SCS to provide a uniform

development and run-time environment on top of the operating system for all higher layers

and applications. Most of these are predominantly "off-the-shelf" packages (except the

configuration of the build system), on which SCS itself provides packaging, installation and

distribution support.

Communication Middleware :

A key role of the Common Software is to provide the communication mechanisms between

SKA Components (Applications). These communication mechanisms must be high-

SKA subsystems and service components

SKA Common Software Application FrameworkUIF Toolkit

Access Control
Monitoring

Archiver

Live Data

Access

Logging

System
Alarm Service

Configuration

Management

Scheduling

Block Service

Communication

Middleware
Database Support

Third-party tools and

libraries
Development tools

Operating System

High-level APIs

and Tools

Core Services

Base Tools

Element Concept 47

Science Data Processor

performance, scalable and robust. The cost of developing this infrastructure from scratch

and then maintaining it has become prohibitive. Most other projects have adopted either

commercial packages or open-source software as the foundation for communications.

Technologies such as Data Distribution Service (DDS), ZeroMQ, ActiveMQ (JMS), CORBA,

Internet Communication Engine (ICE), Protocol Buffers, MessagePack and EPICS Channel

Access are examples of software worth considering for evaluation in the next phase of the

SKA S&C development. Because these packages address the issues inherent in most

distributed software applications they often provide a wealth of other features that are

directly applicable to those needs found in modern observatories. Besides basic data

tr ansport functionality, most of these communication middleware implementations provide

registry services (location transparency), support for request/response and

publish/subscribe communication mechanisms, interface definition languages and

importantly API implementations in multiple programming languages. Based on

experiences with ASKAP, communication middleware that emphasises asynchronous

publish/subscribe messaging is likely to be the most scalable. Furthermore this paradigm

exhibits the best loose coupling characteristics.

It should be noted that the high-rate data streams would not likely be implemented over

such a communications middleware. Rather, a lightweight protocol built directly on top of

UDP would be a more efficient and higher performing approach, that is also much better

suited for the custom hardware that is likely to generate much of this traffic. The benefits of

a high-level communications middleware include a rich feature set and loose coupling,

however at a performance and efficiency cost. The high-rate data streams will require high

performance and efficiency and as such are not as suitable for high levels of abstraction.

Database Support :

This package is responsible for providing unified access to a database management system,

including administration and data access APIs. This component is primarily a database

abstraction layer. Several commercial and non-commercial relational databases are

currently available such as Oracle, MySQL and Postgres. In addition, there is a growing

trend towards highly scalable database management systems, for example Apache HBase,

Apache Cassandra, VoltDB and SciDB. These database management systems show much

promise at SKA scale, with huge scale-out capability and demonstrated management of

multi -petabyte datasets. During the next stage of the Common Software development a

more detailed definition of the technical requirement should be performed along with

evaluation of different database technologies.

Third party tools and libraries :

Third party tools and libraries encompass all third -party software to be used by the upper

layers, including astronomical libraries such as casacore, wcslib, HDF5, etc.

Development Tools :

